An algorithm for computingthe integral closure
نویسندگان
چکیده
Leonard and Pellikaan [2003] devised an algorithm for computing the integral closure of weighted rings that are finitely generated over finite fields. Previous algorithms proceed by building successively larger rings between the original ring and its integral closure [de Jong 1998; Seidenberg 1970; 1975; Stolzenberg 1968; Vasconcelos 1991; 2000]; the Leonard–Pellikaan algorithm instead starts with the first approximation being a finitely generated module that contains the integral closure, and successive steps produce submodules containing the integral closure. The weights in [Leonard and Pellikaan 2003] impose strong restrictions, and play a crucial role in various steps of their algorithm; see Remark 1.7. We present a modification of the Leonard–Pellikaan algorithm that works in much greater generality: it computes the integral closure of a reduced ring that is finitely generated over a finite field. We discuss an implementation of the algorithm in Macaulay 2, and provide comparisons with de Jong’s algorithm [1998].
منابع مشابه
AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملTopics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کاملOn Computing the Integral Closure1
We note how to apply the integral closure algorithm of de Jong to a reduced algebra finitely generated over the integers, and that the first step in Vasconcelos’ integral closure algorithm can by bypassed.
متن کاملA HOMOTOPY PERTURBATION ALGORITHM AND TAYLOR SERIES EXPANSION METHOD TO SOLVE A SYSTEM OF SECOND KIND FREDHOLM INTEGRAL EQUATIONS
In this paper, we will compare a Homotopy perturbation algorithm and Taylor series expansin method for a system of second kind Fredholm integral equations. An application of He’s homotopy perturbation method is applied to solve the system of Fredholm integral equations. Taylor series expansin method reduce the system of integral equations to a linear system of ordinary differential equation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008